GCE ASIA level
 0981/01
 MATHEMATICS M2
 Mechanics

A.M. FRIDAY, 5 June 2015

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Take g as $9.8 \mathrm{~ms}^{-2}$.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. The vectors \mathbf{x} and \mathbf{y} are given by

$$
\begin{aligned}
& \mathbf{x}=\sin \theta \mathbf{i}+2 \cos 2 \theta \mathbf{j}, \\
& \mathbf{y}=2 \mathbf{i}-\mathbf{j} .
\end{aligned}
$$

Find the values of θ between 0 and 2π such that \mathbf{x} is perpendicular to \mathbf{y}.
2. An object of mass 50 kg moves in a straight horizontal line under the action of a constant horizontal force of magnitude 1600 N acting along the line. The resistance to motion of the object is proportional to time t seconds. At time t seconds, the velocity of the object is $v \mathrm{~ms}^{-1}$ and at time $t=2$, it is moving with velocity $41 \mathrm{~ms}^{-1}$ and acceleration $-4 \mathrm{~ms}^{-2}$.
(a) Show that v satisfies the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=32-18 t . \tag{4}
\end{equation*}
$$

(b) Find an expression for v in terms of t and determine the times when the velocity of the object is $28 \mathrm{~ms}^{-1}$.
3. A vehicle of mass 6000 kg is moving up a slope inclined at an angle α to the horizontal, where $\sin \alpha=\frac{6}{49}$. The vehicle's engine exerts a constant power of $P \mathrm{~W}$. The constant resistance to motion of the vehicle is $R N$. At the instant the vehicle is moving with velocity $\frac{16}{5} \mathrm{~ms}^{-1}$, its acceleration is $2 \mathrm{~ms}^{-2}$.
The maximum velocity of the vehicle is $\frac{16}{3} \mathrm{~ms}^{-1}$.
Determine the value of P and the value of R.
4. A particle of mass 0.5 kg is moving under the action of a single force $\mathbf{F N}$, where $\mathbf{F}=(4 t-3) \mathbf{i}+\left(3 t^{2}-5 t\right) \mathbf{j}$.
(a) The velocity of the particle at time $t \mathbf{s}$ is $\mathbf{v} \mathrm{ms}^{-1}$. When $t=0, \mathbf{v}=8 \mathbf{i}-7 \mathbf{j}$.

Find an expression for \mathbf{v} in terms of t.
(b) When $t=3$, the particle receives an impulse of $2 \mathbf{i}-9 \mathbf{j}$ Ns. Find the speed of the particle immediately after the impulse.
5. The diagram shows a light spring of natural length 0.4 m and modulus of elasticity 1470 N with one end A fixed and the other end attached to an object P of mass 15 kg .

Initially, P hangs in equilibrium with the spring vertical.
(a) Determine the extension of the spring.

The object P is pulled downwards so that the total length of the spring is 0.56 m . It is then released.
(b) Calculate the speed of P when it is at a distance 0.45 m from A.
6. A golfer hits a ball from a point A with initial velocity of $35 \mathrm{~ms}^{-1}$ at an angle α above the horizontal where $\sin \alpha=0 \cdot 8$. The ball passes over a tree which is growing in front of a lake. The lake is 100 m wide, as shown in the diagram. The tree is at a horizontal distance of 17.5 m from A.

(a) Determine whether or not the golf ball will fall into the lake.
(b) Find the magnitude and direction of the velocity of the ball as it passes over the tree. [7]
7. A car of mass 1200 kg is moving in a horizontal circle of radius 80 m on a road banked at an angle of 12° to the horizontal.
When the car is moving with a constant speed of $v \mathrm{~ms}^{-1}$, there is no tendency to sideslip. Calculate the normal reaction of the road on the car and find the value of v.

TURN OVER

8. One end of a light inextensible string of length 0.8 m is attached to a fixed point. The other end of the string is attached to a particle P of mass 3 kg . Initially P hangs at rest with the string vertical. The particle P is then projected horizontally with speed $5 \mathrm{~ms}^{-1}$, so that it starts to describe a vertical circle. When the string is inclined at an angle θ to the downwards vertical, P has speed $v \mathrm{~ms}^{-1}$ and the tension in the string is $T \mathrm{~N}$.
(a) Find, in terms of θ,
(i) an expression for v^{2},
(ii) an expression for T.
(b) Find the greatest possible value of θ and briefly describe the subsequent motion of P.
